Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338830

RESUMO

This review paper delves into the current body of evidence, offering a thorough analysis of the impact of large-conductance Ca2+-activated K+ (BKCa or BK) channels on the electrical dynamics of the heart. Alterations in the activity of BKCa channels, responsible for the generation of the overall magnitude of Ca2+-activated K+ current at the whole-cell level, occur through allosteric mechanisms. The collaborative interplay between membrane depolarization and heightened intracellular Ca2+ ion concentrations collectively contribute to the activation of BKCa channels. Although fully developed mammalian cardiac cells do not exhibit functional expression of these ion channels, evidence suggests their presence in cardiac fibroblasts that surround and potentially establish close connections with neighboring cardiac cells. When cardiac cells form close associations with fibroblasts, the high single-ion conductance of these channels, approximately ranging from 150 to 250 pS, can result in the random depolarization of the adjacent cardiac cell membranes. While cardiac fibroblasts are typically electrically non-excitable, their prevalence within heart tissue increases, particularly in the context of aging myocardial infarction or atrial fibrillation. This augmented presence of BKCa channels' conductance holds the potential to amplify the excitability of cardiac cell membranes through effective electrical coupling between fibroblasts and cardiomyocytes. In this scenario, this heightened excitability may contribute to the onset of cardiac arrhythmias. Moreover, it is worth noting that the substances influencing the activity of these BKCa channels might influence cardiac electrical activity as well. Taken together, the BKCa channel activity residing in cardiac fibroblasts may contribute to cardiac electrical function occurring in vivo.


Assuntos
Fibroblastos , Miócitos Cardíacos , Animais , Miócitos Cardíacos/metabolismo , Membrana Celular/metabolismo , Fibroblastos/metabolismo , Células Cultivadas , Ativação do Canal Iônico , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Cálcio/metabolismo , Mamíferos/metabolismo
2.
Adv Healthc Mater ; 12(29): e2301186, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37672681

RESUMO

Although human pluripotent stem cells (hPSCs)-derived cardiomyocytes (hPSC-CMs) can remuscularize infarcted hearts and restore post-infarct cardiac function, post-transplant rejection resulting from human leukocyte antigen (HLA) mismatching is an enormous obstacle. It is crucial to identify hypoimmunogenic hPSCs for allogeneic cell therapy. This study is conducted to demonstrate the immune privilege of HLA-Ehigh /HLA-Ghigh /HLA-IIlow human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs). Ischemia-reperfusion surgery is done to create transmural myocardial infarction in rats. At post-infarct 4 days, hPSC-CMs (1.0×107 cells per kg), including human embryonic stem cell-derived cardiomyocytes (hESC-CMs), HLA-Elow/HLA-Glow/HLA-IIhigh hiPSC-CMs, and HLA-Ehigh /HLA-Ghigh /HLA-IIlow hiPSC-CMs, are injected into the infarcted myocardium. Under the treatment of very low dose cyclosporine A (CsA), only HLA-Ehigh /HLA-Ghigh /HLA-IIlow hiPSC-CMs survive in vivo and improved post-infarct cardiac function with infarct size reduction. HLA-Ehigh /HLA-Ghigh /HLA-IIlow hiPSC-CMs activate the SHP-1 signaling pathway of natural killer (NK) cells and cytotoxic T cells to evade attack by NK cells and cytotoxic T cells. Herein, it is demonstrated that using a clinically relevant CsA dose, HLA-Ehigh /HLA-Ghigh /HLA-IIlow hiPSC-CMs repair the infarcted myocardium and restore the post-infarct heart function. HLA-Ehigh /HLA-Ghigh /HLA-IIlow hiPSCs are less immunogenic and may serve as platforms for regeneration medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Humanos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Antígenos HLA-G/metabolismo , Infarto do Miocárdio/terapia , Regeneração , Diferenciação Celular
3.
Biomed Pharmacother ; 157: 113962, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370523

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) patients suffer varying degrees of heart dysfunction after tyrosine kinase inhibitor (TKI) treatment. Interestingly, HCC patients often have higher levels of pentraxin 3 (PTX3), and PTX3 inhibition was found to improve left ventricular dysfunction in animal models. OBJECTIVES: We sought to assess the therapeutic potential of PTX3 inhibition on TKI-associated cardiotoxicity. METHODS: We used a human embryonic stem cell line, RUES2, to generate cardiomyocyte cultures (RUES2-CM) for functional testing. We also assessed heart function and PTX3 expression levels in 16 HCC patients who received TKI treatment, 3 HCC patients who did not receive TKIs, and 7 healthy volunteers. RESULTS: Significantly higher PTX3 expression was noted in HCC patients with TKI treatment versus those without, and 38% of male and 33% of female patients had QTc prolongation after TKI treatment. Treatment of cardiomyocyte cultures with sorafenib also increased PTX3 expression and induced cytoskeletal remodelling, contraction reduction, sodium current inhibition, and mitochondrial respiratory dysfunction. PTX3 colocalised with CD44 in cardiomyocytes, and cardiomyocyte contraction, mitochondrial respiratory function, and regular cytoskeletal and apoptotic protein expression were restored with PTX3 inhibition. CD44 knockdown confirmed PTX3/CD44 signalling. These results suggest a possible mechanism in which sorafenib treatment increases PTX3 expression, thereby resulting in reduced extracellular signal-regulated kinase (ERK) 1/2 expression that affects cardiomyocyte contraction, while also activating c-Jun N-terminal kinase (JNK) downstream pathways to disrupt mitochondrial respiration and trigger apoptosis. CONCLUSIONS: TKI-induced cardiotoxicity may be partly mediated by the upregulation of PTX3, and thus PTX3 inhibition has potential as a therapeutic strategy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Masculino , Feminino , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Proteína C-Reativa/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Sorafenibe/uso terapêutico , Cardiotoxicidade , Mitocôndrias/metabolismo
4.
Biomedicines ; 10(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36359284

RESUMO

The progress of medical technology and scientific advances in the field of anticancer treatment have increased the survival probabilities and duration of life of patients. However, cancer-therapy-induced cardiac dysfunction remains a clinically salient problem. Effective anticancer therapies may eventually induce cardiomyopathy. To date, several studies have focused on the mechanisms underlying cancer-treatment-related cardiotoxicity. Cardiomyocyte cell lines with no contractile physiological characteristics cannot adequately model "true" human cardiomyocytes. However, applying "true" human cardiomyocytes for research is fraught with many obstacles (e.g., invasiveness of the procedure), and there is a proliferative limitation for rodent primary cultures. Human-induced pluripotent stem-cell-differentiated cardiomyocytes (hiPSC-CMs), which can be produced efficiently, are viable candidates for mimicking human cardiomyocytes in vitro. We successfully performed cardiac differentiation of human iPSCs to obtain hiPSC-CMs. These hiPSC-CMs can be used to investigate the pathophysiological basis and molecular mechanism of cancer-treatment-related cardiotoxicity and to develop novel strategies to prevent and rescue such cardiotoxicity. We propose that hiPSC-CMs can be used as an in vitro drug screening platform to study targeted cancer-therapy-related cardiotoxicity.

5.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374215

RESUMO

Cardiovascular disease is the leading cause of deaths worldwide, claiming an estimated total of 17.9 million lives each year, of which one-third of the people are under the age of 70 years. Since adult cardiomyocytes fail to regenerate, the heart loses the ability to repair itself after an injury, making patients with heart disease suffer from poor prognosis. Pluripotent stem cells have the ability to differentiate into cardiomyocytes in vitro through a well-established process, which is a new advancement in cardiac regeneration therapy. However, pluripotent stem cell-derived cardiomyocytes have certain drawbacks, such as the risk of arrhythmia and immune incompatibility. Thus, amniotic fluid stem cells (AFSCs), a relatively novel source of stem cells, have been exploited for their ability of pluripotent differentiation. In addition, since AFSCs are weakly positive for the major histocompatibility class II molecules, they may have high immune tolerance. In summary, the possibility of development of cardiomyocytes from AFSCs, as well as their transplantation in host cells to produce mechanical contraction, has been discussed. Thus, this review article highlights the progress of AFSC therapy and its application in the treatment of heart diseases in recent years.


Assuntos
Líquido Amniótico/metabolismo , Isquemia Miocárdica , Miocárdio/metabolismo , Miócitos Cardíacos , Células-Tronco Pluripotentes/metabolismo , Regeneração , Idoso , Diferenciação Celular , Humanos , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/terapia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/transplante
6.
Acta Cardiol Sin ; 36(6): 588-594, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33235414

RESUMO

Despite enormous advances in the treatment of cardiovascular disease (CVD), heart disease remains the leading cause of mortality and morbidity worldwide. Thus, there is a need for novel CVD therapeutics. CVD appears to be a custom-made scenario for applying stem cell therapy. Although human pluripotent stem cells can differentiate into cardiomyocytes to regenerate injured heart tissue and restore post-myocardial infarction cardiac function, several obstacles need to be overcome before cell therapy can be applied in CVD patients. One of these major hurdles is the immunological barrier. Currently, long-term immunosuppressant treatment is necessary for allogenic stem cell or organ transplantation to prevent rejection. However, the long-term use of immunosuppressants may cause serious adverse events such as nephrotoxicity, severe infections and malignancy. Thus, overcoming this immunological hurdle is crucial for the clinical application of stem cell therapy in cardiac regeneration. This review summarizes the recent advances and challenges of immunogenicity in relation to stem cell therapy.

7.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244307

RESUMO

AIM: Immunological checkpoint therapy is considered a powerful method for cancer therapy and acts by re-activating autologous T cells to kill the cancer cell. Myocarditis cases have been reported in cancer patients after immunological therapy; for example, nivolumab treatment is a monoclonal antibody that blocks programmed cell death-1/programmed cell death ligand-1 ligand interaction. This project provided insight into the inflammatory response as a benchmark to investigate the potential cardiotoxic effect of T cell response to the programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis in regulating cardiomyocyte injury in vitro. METHODS AND RESULTS: We investigated cardiomyopathy resulted from the PD-1/PD-L1 axis blockade using the anti-PD-1 antibody in Rockefeller University embryonic stem cells-derived cardiomyocytes (RUES2-CMs) and a melanoma tumor-bearing murine model. We found that nivolumab alone did not induce inflammatory-related proteins, including PD-L1 expression, and did not induce apoptosis, which was contrary to doxorubicin, a cardiotoxic chemotherapy drug. However, nivolumab was able to exacerbate the immune response by increasing cytokine and inflammatory gene expression in RUES2-CMs when co-cultured with CD4+ T lymphocytes and induced apoptosis. This effect was not observed when RUES2-CMs were co-cultured with CD8+ T lymphocytes. The in vivo model showed that the heart function of tumor-bearing mice was decreased after treatment with anti-PD-1 antibody and demonstrated a dilated left ventricle histological examination. The dilated left ventricle was associated with an infiltration of CD4+ and CD8+ T lymphocytes into the myocardium. PD-L1 and inflammatory-associated gene expression were significantly increased in anti-PD-1-treated tumor-bearing mice. Cleaved caspase-3 and mouse plasma cardiac troponin I expressions were increased significantly. CONCLUSION: PD-L1 expression on cardiomyocytes suppressed T-cell function. Blockade of PD-1 by nivolumab enhanced cardiomyocyte inflammation and apoptosis through the enhancement of T-cell response towards cardiomyocytes.


Assuntos
Apoptose/fisiologia , Antígeno B7-H1/metabolismo , Inflamação/metabolismo , Miócitos Cardíacos/metabolismo , Linfócitos T/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Humanos , Imunoterapia/métodos , Masculino , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Miócitos Cardíacos/patologia , Nivolumabe/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Int J Mol Sci ; 21(7)2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32235313

RESUMO

Mature mammalian hearts possess very limited regenerative potential. The irreversible cardiomyocyte loss after heart injury can lead to heart failure and death. Pluripotent stem cells (PSCs) can differentiate into cardiomyocytes for cardiac repair, but there are obstacles to their clinical application. Among these obstacles is their potential for post-transplant rejection. Although human amniotic fluid-derived stem cells (hAFSCs) are immune privileged, they cannot induce cardiac differentiation. Thus, we generated hAFSC-derived induced PSCs (hAFSC-iPSCs) and used a Wnt-modulating differentiation protocol for the cardiac differentiation of hAFSC-iPSCs. In vitro studies using flow cytometry, immunofluorescence staining, and patch-clamp electrophysiological study, were performed to identify the characteristics of hAFSC-iPSC-derived cardiomyocytes (hAFSC-iPSC-CMs). We injected hAFSC-iPSC-CMs intramuscularly into rat infarcted hearts to evaluate the therapeutic potential of hAFSC-iPSC-CM transplantation. At day 21 of differentiation, the hAFSC-iPSC-CMs expressed cardiac-specific marker (cardiac troponin T), presented cardiomyocyte-specific electrophysiological properties, and contracted spontaneously. Importantly, these hAFSC-iPSC-CMs demonstrated low major histocompatibility complex (MHC) class I antigen expression and the absence of MHC class II antigens, indicating their low immunogenicity. The intramyocardial transplantation of hAFSC-iPSC-CMs restored cardiac function, partially remuscularized the injured region, and reduced fibrosis in the rat infarcted hearts. Therefore, hAFSC-iPSCs are potential candidates for the repair of infarcted myocardium.


Assuntos
Líquido Amniótico/citologia , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Privilégio Imunológico , Células-Tronco Pluripotentes Induzidas/citologia , Desenvolvimento Muscular , Miócitos Cardíacos/citologia , Animais , Biomarcadores , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Fenótipo , Ratos , Regeneração , Transplante de Células-Tronco/métodos , Resultado do Tratamento , Função Ventricular Esquerda
9.
J Neuroimmune Pharmacol ; 10(1): 45-54, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25331680

RESUMO

Traumatic brain injury (TBI) causes increased release of several mediators from injured and dead cells and elicits microglial activation. Activated microglia change their morphology, migrate to injury sites, and release tumor necrosis factor-alpha (TNF-α) and others. In this study we used a controlled fluid percussion injury model of TBI in the rat to determine whether early (4 h post-injury) or late (4 days post-injury) treatment with MLC 601, a Traditional Chinese Medicine, would affect microglial activation and improve recovery. MLC 601 was chosen for this study because its herbal component MLC 901 was beneficial in treating TBI in rats. Herein, rats with induced TBI were treated with MLC 601 (0.2-0.8 mg/kg) 1 h (early treatment) or 4 day post-injury (late treatment) and then injected once daily for consecutive 2 days. Acute neurological and motor deficits were assessed in all rats the day before and 4 days after early MLC 601 treatment. An immunofluorescence microscopy method was used to count the numbers of the cells colocalized with neuron- and apoptosis-specific markers, and the cells colocalized with microglia- and TNF-α-specific markers, in the contused brain regions 4 days post-injury. An immunohistochemistry method was used to evaluate both the number and the morphological transformation of microglia in the injured areas. It was found that early treatment with MLC 601 had better effects in reducing TBI-induced cerebral contusion than did the late therapy with MLC 601. Cerebral contusion caused by TBI was associated with neurological motor deficits, brain apoptosis, and activated microglia (e.g., microgliosis, amoeboid microglia, and microglial overexpression of TNF-α), which all were significantly attenuated by MLC 601 therapy. Our data suggest that MLC 601 is a promising agent for treatment of TBI in rats.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Contagem de Células , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/prevenção & controle , Imuno-Histoquímica , Masculino , Microglia/efeitos dos fármacos , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/prevenção & controle , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...